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ON THE ~Nl~~D~NG PROCESS FOR CONTACT INTERACTION* 
V.I. KUZ'~ENKO 

The ;r.l=cSjJ- r ;rscecs ir. a body z3er the ac:icr. cf a stamp is icvesti?ated. It 

1s s;ssuee5 that the ~1 oading occurs atallpoints of thebody. The contact area 
betweenthebody andthe stampcar. change during the;inloading; consequently, 
the unloadingproblemd uring contactinteractionisnon-linear. Ageneralization 
to the case of contact problemsisprcpcsed for the theoremofunloading/l/. A 
variationalprincipleis obtainedinthe unloadingdisplacements, andthe exist- 
ence anduniqueness of the solution of the unloadingproblemare investigated . 
The unloadingprocessis examined in an elastic-plastichalf-space onwhich a 
stampof circularplanformacts. The changeinthe contact area andinthe contact 
stresses duringunloadingisstudied, andthe shapeoftheresidualimpressionis 
obtained. TheproblemisinvestiJatedbyusingtheGalinsolution/2/of the action 
of a circular stamp and a load applie,doutside the stampon anelastichalf-space. 
Numerical methods of solving contactproblemswithunloadingare alsoexamined: 
anexamoleisnresented forthenumericalsolutionoftheproblemof plane defos- 
mation 

*, - 
zn the compression of a strip by two stamps with subsequent unloadino. 

*prikl.Matem.Mekhan.,49,3,445-452,198s 



343 

1. Forrnzrlation of the problem. The unloading process is investigated in a body 
occupying the domain $2 of three-dimensional sp&& boundedby a piecewise-smooth surface r. 
The deformations and displacements are considered to be Small. We associate a monotonically 
increasing parameter t, f E IO, Tl, which we call the time, with the deformation process. We 
understand tli(s, t), efr(q t&and otf (t,t) to be components of the displacement VectOr, the strain 
and stress tensors at the point I = (s,,xt,x9) at the time t. The surface r can consist of 

three parts: Tu, ro, lTe. The displacements ui(z,tf iax! given on the part P,, and the forces 
Si (z, t) on the part To. A rigid stamp, whose shape and Location at the time t will be 
described by the distance@fx)from the point r to the stamp surface measured along the 
normal. direction v @f I acts on the body at points of the surface rc. The contact area 
is not given in advance and can change during the deformation. It is assumed that there is 
no friction onthe contact area. We letu,, u,, 0,. 0, denote the normal and tangential components 
of the displacement and stress vectors on r,. Then stamp interaction with the body Q is 
described by the following conditions /3,4/: 

0, (I, 1) < 0, 0, (X,i) = 0 (1.1) 

UV (3J, If < @ (2. f), Q, fs, 0) > 0 

0, (2, tjlu, (3, f) - Q, (I, $)I = 0, YXE I-,, Yi E lo, Tl 

Let the functions L', jr.t). Si (x,1), @i~.i) be such that startingwiththe time i* unloading 
occuxs at all points of the body $2. It is assumed that for f<t* the solution of the 
problem is obtained withintheframework of a certain definite theory of plasticity, while at 
the time 1* the condition of beginning of the unloading associated with this theory is used, 
We introduce increments of the unloading displacements, deformations, and stresses AU;. AFij. 
AOij in conformity with the relatiocships 

Ui (2, 1) = ul (r.t*) + AU, (5. f) (1.2) 
El) (x. t) = ES> ir. t*) -L AEij (X.t) 

ogj (I. tf r Oij (Z.t*) + i*ij (TT, f) 

The increments AC, (.r.t), ASi (r,t), AD(z.1) are defined analogously. We consider the 
increments of the stress and strain tensor components during unloading to be connected by the 
linear relationships 

Ao,j = A:L~ (2) As?;, (1.31 

The elastic constants A$?: (f) generally depend on the historyofthe deformation befcre 
the time t+. 

Therefore, the problem of determining the state of stress and strain during unloading 
invoives constructing the functions i~,.Eij* Uij that satisf;theequilibrium equations, the 
Cauchy relations and the relationships (1.2) and (1.3), as well as the boundary conditions on 

rtl and To and conditions (1.1) on the contact surface, 

2. Theorem on unloading during contact interaction. The solution of boundary 
value problems on unloading for Tc = i" isbasedonKl'yushin's theorem /I/, according to which 
the state of stress and strain is determined by the relations (1.2; at an arbitrary unloading 
time, while the increments AU,. Aeij. 30,~ are a solution of a boundary va&e problem of 
elasticity theory for the domain G for displacements AC', (.r.t) given on TU and forces AS, 
(x. t) given on Ta . The formal. replacement of the quantities in conditions (1.1) by their 
increments can obviously result in violation cf these conditions; consequently, the tieorem 
on unloading cannot be carried over Cirectly to the contact interaction probier.. Such a 
deduction is explained by the non- linear nature of the contact problems with indefinite contact 
areas even if linear relationships are used tc connect the stress and strain. 

Let us generalize the theorem o~i unloading to COi?taCt problems in such a way as tc 
conserve relationships (1.2). To this end, we formulate the following special conditions for 
the increments on the surface r,: 

(2.1) 

It can be seen that if Au,, 
will satisfy conditions (1.1). 

Ai\o,j satisfy conditions (2.1), then uj, ail defined by (1.2), 
Therefore, we obtain the following theorem on unloading 

during contact interaction. 

Theorem 1. To determine the state of stress and strain during unloading fox contact 
interaction between a body and a stamp, it is 
for the domain n with respect to Au,, AE~~,A~,~ 

sufficient to solve the elasticity theory problem 
by replacing ci,St in the boundary conditions 

by Atmi,ASi and taking the conditions ;1.1) on the contact surface. The displacement vector 
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and strain and stress tensor components are determined by relationships (1.2). 

Corollary. If a stamp acting on the boundary of an elastic-plastic half-space is moved 
translationally in the normal direction to the boundary , and the contact stresses at the time 
of the beginning of the unloading are limited, then the beginning of the unloading is 
accompanied by retardation of the surfaces making contact at points of the contact-areacontour. 

Let the contact area be reduced during an arbitrarily small time interval At following 
t* . Then it follows from Theorem 1 that the increments of the contact stresses io, will 
equal the contact stresses, with opposite sign, during impression of a stamp with a flat base 
(the contact area does not change) or with a concave base (the contact area increases during 
the time Afj to a depth AQ in an elastic half-space. In both cases the contact stresses 
or: the stamp edges will be unbounded for arbitrarily small Am, which results in violation 
of the condition O,(Z.PJ - 10, (z, rrr; (I because of the boundedness of Qy(~,l'j. 

We note that for a sufficiently high degree of initial loading, the residual stresses 
that occur can cause secondary plastic deformations, for instance, when a sphere is pressed 
into a half-space /5?. In such cases Thecrem 1 is applicable only up to the occurrence of 
the secondary plastic deformations. Since the corollary of Theorem 1 refers to the time ciZ 

the beginning of unloading, the circumstance noted does not restrict the applicability of 
this corollary. 

3. Variational formulation of the unloading problem. We use the Sobolev 
space H s [11’21 (C?)i3 of the vector functions L' (I) =- (C,(I), u?(x), v~(I)) defined in the domain 52 
and square-summable in Q together with their first partial derivatives. We understand the 
scalar product in H to be 

We introduce tie set 1‘* (1) E H of kinematicaliy possible increments cf the displacements 
Az'f H in which we incl.ade increments satisfying the boundary conditions on I‘, and the 
kinematic conditicns from (2.1: ok. 1‘ r 

1." (:) = jl.1. z H j A:,, (.I. r) = Al‘, (s. t). Yx s I-, 
AI, CT. t) _r --II7 (s. f*) - a, (1. ri. ‘t‘l E I-,} 

We denote bg .!,G,) the strain increments ccrresgozding to _?xl' according to the fail&y 
reiationshlps. As in /'4)', xe &rarz the folloiiing integral inequality by TiSiSCj Gauss's thecrem: 

ay usir.g well-know:: met?Jods ,'6./, it can be shohvn that the solution of the variational 

inequalities (3.1) (cr the extremal problem (3.2)) is a generalized soluticn of the problem 

in the original formulet;=n. 

4. Existence and uniqueness of the solution. starting fro7 the varia'iona' ‘X i 4 L _ 
formulaticn of the prob;er., we now t‘~r~ our attention to the fact that the functional J(31.5 
is quadratic and can be considered as a functionai of the total enerw fcr a certain linear 
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elasticity theory problem with addditionelforces-o,* given on rt. Moreover, the set V*(t) 

is convex and closed for all 1 f it*, ?‘I. In this case, it is sufficient to use appropriate 
general theorems /7/ in investigating the existence and uniqueness of the solution. As in 
/4/, we introduce the auxiliary set V ** (tfwhich is obtained by shifting all the elements of 
the set V*(@by a fixed element u,,~ V*(t) satisfying the conditions 

Au,i (2, 0 = Acii (I, t), VX EE ru 

duo,. (x, t) = -u, (z, t*) + @ (s. t), Viz E rr 

We also introduce the subspace R CHof displacements of the body n as a rigid body. 
Then the following assertion holds as a special case of the theorems of the existence and 
uniqueness of the solution, for linear unilateral problems /Y/z 

Theorem 2. Let the functions $*(z), d&i(r) satisfy the conditions 

a,* E H-"* (r,), A&t E Lm (nt 

d&l AORTAE,, < aAEi,AEiI, a > 0 

and the given functions US, Si, d, by subject to the requirements 

Ci E H"' (I’“), Si ~ HI"' (r,), CD E H"' (I’,), vt E tt*, T] 

and for all ArE R n I'** (t) let the inequality 

F (W - F* (b) < 0, vt E It*, 2-l (4.11 

hold, where the equality sign holds only for such ACE R n Fe* (t) for which -ArER fl 1'0* (t)‘ 
Then a solution AUE H, \-‘t E it*,T] exists of the problem about the unloading process during 
contact interaction between a body and a stamp that is unique to within increments of the 
displacement ATE R such that F(h)- F* (Ar) =O. 

Note that conditions (4.1) are necessary only for r, = 3. 

5. On the interaction between a circular stamp and a half-space in the 
unloading process. In an elastic-plastic half-space z9 .<O let a stamp of circular 
planform with flat base of radius c be embedded to a depth @*, and then let the depth of 
embedding decrease monotonically. It is assumed there is no friction between the body and 
stamp surfaces. The contact pressure distribution p* (z1,x2) at the time f* is considered 
to be known. Assuming the elastic-plastic deformation prior to f = t* did not change the 
elastic constants, the elastic modulus E, and Poisson's ratio v, we determine the size of 
the contact area and the contact stress distribution as a function. of the stamp position during; 
unloading. We also find the profile of the residual impression. 

The problem of impressing a stamp of circular planform into a rigidly plastic half-space 
was investigated in /8,9/ using the tota? plasticity condition. The numerical solution of the 
corresponding problem for an elastically ideal plastic medium: is proposed in /lo/. 

We introduce the cylindrical coorc?inate system(r, q, z) by locating the origin at the 
centre of the circle of initial. contact. The direction of the 0: axis is in agreement with 
the direction of Ox, axis. Let the depth of stamp embedding diminish by A0 as comparec? 
with @* iip to a certain time of unloading. According to Theorerr 1, the pressure distribution 
P 09 can be represented for the depth of embeddincj CD* - A@ in the fom 

P (4 = P* (4 - Ap (r). r < c 

where Ap (r) = -A(r:, (r. cc, 0) i c the norrr.al stress on the surface z = 0 corresponding to the 
Solution of the elasticity-theory problem fcr a half-space under the following boundary 
conditions: 

-Auzr P, CF, 0) = Ap (r) < P* (r) 

Aort (r, (F. 0) = Aozii (r, q. 0) = 0, -Au2 (r, q, 0) > A@ 

IAp (r) - p* (r)ll~~: (r, 8. 0) -L A@] = 0, Vr < c 

15.1) 

Au,, (r, Q, 0) = Au,, (r. v. 0) = Au,~ (r, q 0) = 0, Yr > c (5.2) 

Considering that the contact stresses at the beginning and during unloading are limited, 
we apply the corollary of Theorem 1 to each time of unloading and obtain that the contact 
area during unloading is a circle with monotonically decreasing radius Q,<c. Then conditions 
(5.1) can be replaced by conditions in the form of the equalities 

Ap (r) = p* (r)r u -< r < c (5.3) 
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Considitions (5.2) and (5.3) correspond to the elasticity-theory problem about the 
action of a circular stamp with a flat base of radius a and axisymmetric load distributed 
around the ring 2 Qr+.; c on the boundary of a half-space. Such a problem is a special case 
of the Galin problem /2/ concerning the action of a stamp of circular planform and a normal 
load distributed outside the stamp. Using Galin's solution, we conclude that the quantity 
Apfr) can be represented in the form 

AP @I = AP, W + AP, b-1 (5.41 

where Ap,(r) is the pressure under a circular stamp with base of radius a upon impression to 
a depth A@ equal to 

(5.5) 

and Aphp,(r)is the additional pressure that occurs under a stamp of radius a due to the action 
of the load p*(r) distributed over the ring o,<r<c and equal to 

The radius of the contact area a is determined from the condition of continuity of the 
pressure on the contour of the contact area: p(a)= 0. Determination of the residual impression 
reduces to determining the displacements cf points of the circle T < c that occur due to 
the action of the normal load p* (r) distributed over this circle. Using the Boussinesq 
solution, we obtain the profile of the residual impression 

(5.7) 

Therefore, the contact stress distribution during unloading and the shape of the residual 
impression for any pressure distribution p* (r) at the time of the beginning of: unloading 
has been obtained in quadratures. The approach elucidated can also be utilized in the case 
of the action of stamps of circular planform with non-planar base. 

In the case p* (r) = p*=eonst , simple expressions axe successfully obtained for the radius 
of the contact area, the contact stresses, andthe profile of the residual impression. We 
note that the pressure distribution ,I,*@) differs by not more than I?% /8,9/ from the constant 
value according to the scheme of a rigidly plastic body. 

For p*(r) = const we obtain from (5.6) 

The condition of continuity of th2 pressure on the contour of the contact area p* - Ap 
(a) = 0 will be satisfied if the radius of the contact area is selected as follows: 

(5.8: 

Formula (5.E) is near.ingf'J; for Ad, s< ?p*c(l - s*)E: fcr Aa = Zp*c (i - vZ).'Etotalseparaticn 

of the stamp from the half-space occurs. By taking the radius of th2 contact area as given 

by (S.E), we obtaInthe contact pressure distribution at an arbitrary time of the unloading 
process 

2P* 

P(r)= 
i 

p*--arctg 
c? - (12 

f--- .2- ?<a 

0. r>a 

The profile of the residual imprescicn is described for p*(r) = const by the function 

tc(r)=--al* -_ 4 (*;+I p*cE (4) 

where E(...) is the complete elliptic integral of the second kind. 

6, Example of the numerical solution. Using the variational formulation (Ser.4‘ , 

a method was developed for the numerical solution of unloading problems under plain strain 

conditions. The extrema; probiem (3.11 discretized using the method of finite elements, while 
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the solution of the non-linear programming problem that occurs was obtained by the generalized 
method of seauential upper relaxation /ll/. A set of programs was developed for investigating 

the state of-stress and strain during the unloading process for plain strain of a multilayered 
packet. 

As an example, we consider the problem of the compression of a strip of rectangular shape 
-2&<r,f2& -h<z,<h in a section of the plane &,I, by two stamps. ‘I’%8 stamp surfaces are 

described by the following equations (because of symmetry the equations are presented only for 
the upper stamp): 

(6.1) 

(6.2) 

where Gis the elastic modulus for torsion, and % is the elastic limit for torsion. As a 
result of the monotonic growth of the load the stamps come together to the distance 2h- ZW, 
UP= Gs,h!G, and then the stamp is released from the load, which results in unloading in the 

strip. It is assumed that the stamps shift transversally in the direction of the O+, axis 
under active loading and unloading. 

The theory of small elastic-plastic strains was utilized in investigating the active 
loading process; a linear hardening scheme with ratio 0.05 between the elastic and tangential 
moduli was used. Poisson's ratio was 0.3. The problem was solved numerically under active 
loading by using the method described in ;12/. 

The unloading problem was solved under the assumption that unloading occurs at all points 
of the strip and secondary plastic strains do not occur, This assumption was confirmed by the 
solution of the problem. 

The contact stress distribution during unloading is represented in Fig. 1 for the cases 
of compression of stamps with the Eqs. (6.1) for the surfaces (continuous curves) or (6.3) 
(dashed curves). Curves 1-4 correspond to the spacing between the stamps 2h- 2cD,@G,~,h= 1.5, 
i.3, 1.1. 0,9. We note that the contact stress diagrams are similar in a sufficiently large 
range of variation Of q, where the maximum value of the contact pressure is a linear function 
of the closure 21@. 

D 0.6 f.6 x,/h 
Fig.2 

Fig.1 

Vertical displacements q(r,b of the surface x%=h are presented in Fig. 2 at the time of 
the beginning of unloading (dashed curves! and in the residual state (continuous curves). The 
numbers 1, 2, 3 correspond to stamps with the equations (6.11, (6.21, (6.3) for the surfaces. 
For comparison, Fig.2 also shows the displacements for the case of compression of a strip 
by parallel slabs (curve 4). We emphasize that the shape of the residual impression differs 
significantly fromthe shape of the stamp. We draw attention to the fact that the maximum depth 
of the impression is practically identical in all the cases although the shape of theimpressions 
differ substantially. This result enables us to conclude that for sufficiently shallow stamps 
the maximum depth of the residual impression is independent of the shape of the stamp. 
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ON THE STABILITY OF THE LINING OF A HORIZONTAL 
OPENING IN A VISCOELASTIC AGEING MEDIUM' 

N.KX. ARUTYUNYAN , A.D. DROZDOV and V.B. KOLMANOVSKII 

The staility of a long elastic t-be in a uiscoelastic mediiun is studied. 
Stability conditicns, formulated iT. terms c, l the characteristics of the 
tube and the medium, are set up. Such probelms are of interest in 
studying the stability of undergrc.und structures /l-3/. The stability 
problem for a tube in the case when the medium is elastic was studied 
in /4/. This paper to,Jches on the investigations in /5,6/. 

1. Formulation of the problem. At a depth H from the dayiight surface in mountain 
rock, let there be a working (opening) of circular cross-section of radius R. The rock is 

considered tc be a homogeneous, isotropic, viscoelastic medium filling the half-space. The 

working is reinforced, i.e., an elastic cylinder is imbedded which is fixed to the material 
of the rock surrcunding the working. The lining is considered to be a homogeneoiis elastic 
medi.um. Far from the ends cf the working, plane strain is realized in the rock and the 
lining. According to /7/, for H,R> 50 the problem of determining the state cf stress and 
strain of the lining car. be sinpiified and the lining can be considered as an eiastic tube 
reinforcing a cylindrical hcle in a viscoelastic space which is compressed by the uniform 
forces p1 = YH, p2 = ~(1 - v)-'yH far from the hole, where y is the specific gravity, and 
v is Poisson's ratio of the rock. 

Let the viscoelastic medium occupy all three-dimensional space. Let xl, x2, r3 denote the 

coordinates of points of the medium in a Cartesian coordinate system Oz,z,r,. A cylinder 

~~2 + ~~2 < 1 is cutout of themedium,where the radius canbetakentobe equaltounity without loss 
ofgenerality. Acircularelastictubewhoseexternal radiusequals unityisinsertedintothe hole 
beingobtained. Atthe time t = 0 compressive forces of constant intensity p1 alongthe Ox1 axis 
and p2 alongthe Oz, axis are appliedtotheviscoelasticmediumatinfinity,andaforce of intensity 
gdirectedperpendicularto the tube axisis appliedtotheinner surface of the tube. We introduce 
the cylindrical coordinate system Or%r,, whose axis L)x, coincides with the tube axis, while 
the polar angle 6 is measured from theOx, axis. The forces applied to the inner surface of 

*Prik:. Matem.Mekha~.,49,3,S53-4E',3985 


